Product Description
High Performance Pulley for Belt Conveyors
BRIEF INTRODUCTION
Our company has adopted proprietary technology and equipment imported from German PWH company for the design and manufacturing of various pulleys . As a key component of the conveyor, the pulley should have high reliability. Our company’s R&D center has improved the pulley structure, reduced structural stress, and increased the lifespan and reliability of the pulley group through finite element analysis and optimization calculations. Our company’s pulley is manufactured from specialized high-end manufacturing equipment and has achieved serialized and large-scale production.
We have produced conveyor pulleys for belt width up to 2.4 m, pulley diameter up to 1.8 m, and maximum tension up to 300 tons.
PRODUCT INFORMAITON
Product Name | Pulley |
Adhesive Material | smooth, ordinary rubber, wear-resistant rubber, UHMW-PE, rubber ceramic, etc.. |
Adehensive Treatment | glued or casted |
Carrying Capacity | light, medium and heavy type |
Connection Mode | Shafts and wheels of the medium and heavy-duty pulley are connected by expansion sleeves. |
Pulley Pipe | made of Q235B carbon steel, with high roundness and straightness ensuring rotation balance |
Shaft | 45 # round steel or according to your requirements; ultrasonic inspection, quenching and tempering treatment, strict control of key fit size tolerances, greatly extending service life. |
Bearing Brands | Havalo, SKF, FAG, SNK or according to your requirements |
Bear Seat | Integral bearing seat, partial bearing seat |
Color | bright red paint or according to your requirements |
VARIOUS TYPES OF PULLEY ADHESIVE SURFACE
BEARING SEAT MODE
TECHNICAL SPECIFICATIONS & PARAMETERS
Technical Parameters for Belt Conveyor Pulley | ||||||
Belt Width (mm) | Pulley Standard Diameter without Adhesive Layer(mm) | |||||
650 | 200,250,320,400,500,630 | |||||
800 | 200,250,320,400,500,630,800,1000,1250 | |||||
1000 | 250,320,400,500,630,800,1000,1250,1400,1600 | |||||
1200 | 250,320,400,500,630,800,1000,1250,1400,1600 | |||||
1400 | 320,400,500,630,800,1000,1250,1400,1600 | |||||
1600 | 400,500,630,800,1000,1250,1400,1600 | |||||
1800 | 250,400,500,630,800,1000,1250,1400,1600 | |||||
2000 | 400,500,630,800,1000,1250,1400,1600 |
Technical Parameters | ||
1 | Outer Circle Diameter D Deviation | 200 ≤ 1.5 400 ≤ 2.0 1000 ≤ 2.5 |
2 | Radial Runout of Outer Circle | D ≤ 200 ; without adhesive 0.3 ;with adhesive 0.5 200 < D ≤ 800 ; without adhesive 0.6; with adhesive 1.1 800 < D ≤ 1600 ; without adhesive 1.0; with adhesive 1.5 1600 < D ≤ 1800 ; without adhesive 1.5; with adhesive 2.0 |
3 | Static Balance Accuracy | G40 |
PROCESS FLOW OF PULLEY
Our company is equipped with necessary equipment for processing pulleys, such as large oil pressure machines, rolling machines, specialized pulley automatic explosive welding operators, large diameter lathes, boring machines, ultrasonic flaw detectors, static balancing devices, pressure casting machines, etc. Due to the special correction process adopted by the company, the pulley pipe skin is rounded before processing, and the pulley pipe wall is uniform after processing, thereby ensuring that the pulley has high static balance performance and high mechanical performance.
PRODUCT FEATURES
For pulleys with complex forces, large loads and used in heavy working conditions, they all adopt a cast welded structure and expansion sleeve connection. Compared with traditional drums in China, this type of drum mainly has the following characteristics :
(1) The structural parameters of the pulley are advanced and reasonable, and there is a dedicated computer calculation program to determine the shaft diameter, cylinder skin thickness, wheel amplitude plate shape and spacing, as well as the position of the circumferential weld seam set at the position where the stress is minimum and the number of cycles is minimum.
(2) The key technology of using single sided welding and double sided forming ensures the quality of the weld seam.
(3) The expansion sleeve connection is used between the drum hub and shaft, which not only solves the problem of key connection stress concentration that has been existing for many years and the technical difficulties of manufacturing and installing axial double keyways, but also achieves overall quenching and eliminates welding internal stress.
(4) The circumferential and longitudinal welds of the pulley have undergone non-destructive testing, and the casting quality of the wheel hub has undergone magnetic particle or ultrasonic testing.
(5) The total radial runout of the outer circle after roller casting is less than 1mm.
(6) All drums undergo static balance tests before leaving the factory to achieve G40 accuracy.
(7) All driving pulley and directional pulley with high stress have undergone finite element analysis to ensure that the stress and strain of the rollers meet the requirements.
Due to a series of measures taken, the pulley group produced by SK has a reasonable structure, large bearing capacity, and reliable performance. And it overcomes the problem of fatigue fracture at the welding seam of the existing pulley plate in China. The pullley (including the welding part) is guaranteed to have a rotational fatigue strength of over 108°.
WORKSHOP OF FINISHED PULLEIES
PACKAGE AND DELIVEYR
APPLICATION INDUSTRIES
CONVEYORS EPC/BOT CONTRACTING CAPABILITY
VARIOUS CONVEYOR SPARE PARTS SUPPLY
AERIAL VIEW OF OUR FACTORY
INTELLIGENT PRODUCTION & TESTING
CERTIFICATES & HORNORS
BRANCHES & OFFICES
TEAM BUILDING
LONG-TERM STRATEGIC COOPEATORS
MAIN CUSTOMERS
CUSTOMERS VISITS
DOMESTIC & OVERSEAS EXHIBITIONS
SINGING CEREMONY
GLOBAL BUSINESS NETWORK
B /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | CE, ISO |
---|---|
Pulley Sizes: | Kk |
Manufacturing Process: | Forging, Casting |
Material: | Carbon Steel |
Surface Treatment: | Smooth, Rubber or Ceramics |
Application: | Chemical Industry, Grain Transport, Mining Transport, Power Plant, Port, Dock, Energy, Cement, Metallurgy, Steel |
Samples: |
US$ 7/Piece
1 Piece(Min.Order) | |
---|
Customization: |
Available
| Customized Request |
---|
Can drive pulleys withstand extreme environmental conditions?
Drive pulleys are mechanical components used in various systems to transmit power and motion. They are commonly found in industries such as manufacturing, mining, and agriculture. The ability of drive pulleys to withstand extreme environmental conditions depends on several factors, including the materials used, the design and construction of the pulley, and the specific conditions it is exposed to.
In general, drive pulleys are designed to be durable and capable of operating under a wide range of environmental conditions. They are typically made from materials such as steel, cast iron, or aluminum, which offer good strength and resistance to wear and corrosion. These materials can withstand moderate to high temperatures, as well as exposure to moisture, dust, and other contaminants.
However, there are limits to the environmental conditions that drive pulleys can withstand. Extreme temperatures, such as those found in extremely hot or cold environments, can affect the performance and lifespan of the pulleys. High temperatures can cause thermal expansion, which may lead to misalignment or excessive wear. Cold temperatures can make materials more brittle and prone to cracking or breaking under stress.
In addition to temperature, other environmental factors such as humidity, corrosive substances, and abrasive particles can also impact the performance of drive pulleys. High humidity levels can promote corrosion, especially if the pulleys are not properly protected or coated with suitable protective finishes. Corrosion can weaken the pulley’s structural integrity and lead to premature failure.
Abrasive particles, such as dust or grit, can cause wear and tear on the pulley’s surface and the belt that runs on it. This can result in reduced traction and slipping, affecting the efficiency and reliability of the system. Proper maintenance and regular cleaning can help mitigate the effects of abrasive particles.
It’s worth noting that some applications may require special types of drive pulleys specifically designed to withstand extreme environmental conditions. For example, in industries where pulleys are exposed to chemicals or highly corrosive substances, pulleys made from stainless steel or other corrosion-resistant materials may be used.
In conclusion, while drive pulleys are designed to be robust and capable of withstanding a wide range of environmental conditions, there are limits to what they can endure. Extreme temperatures, humidity, corrosive substances, and abrasive particles can all impact the performance and lifespan of drive pulleys. It’s important to consider the specific environmental conditions and select pulleys that are suitable for the intended application.
What role do drive pulleys play in automotive engines and accessory drive systems?
Drive pulleys play a crucial role in automotive engines and accessory drive systems, contributing to the proper functioning of various components and systems. They are responsible for transferring power from the engine to auxiliary components, such as the alternator, water pump, power steering pump, and air conditioning compressor. Here are the key roles of drive pulleys in automotive engines and accessory drive systems:
1. Power Distribution:
Drive pulleys are responsible for distributing power from the engine’s crankshaft to various accessory components in the vehicle. They are typically connected to the crankshaft by a drive belt or serpentine belt. As the engine rotates, the drive pulleys transmit rotational motion to the connected accessories, enabling them to perform their respective functions. By efficiently distributing power, drive pulleys ensure the proper operation of essential components.
2. Belt Routing:
Drive pulleys assist in determining the belt routing in automotive accessory drive systems. The pulleys are strategically positioned to guide the belt along the desired path, ensuring proper engagement with each accessory component. The correct belt routing is crucial for optimal power transfer, belt tension, and overall system performance. Drive pulleys serve as guiding mechanisms, contributing to the proper alignment and operation of the belt in the system.
3. Speed and Torque Conversion:
Drive pulleys, in conjunction with the belt or pulley size ratios, enable speed and torque conversion in automotive accessory drive systems. By varying the size ratio between the driving and driven pulleys, different speed and torque relationships can be achieved. This allows the accessories to operate at their required speeds and generate the necessary torque for their functions. Drive pulleys play a role in adapting the engine’s rotational speed and torque to match the specific requirements of each accessory component.
4. Load Management:
Drive pulleys help manage the load on the engine by driving auxiliary components only when needed. For example, the alternator is driven by a pulley that converts rotational motion into electrical energy to charge the battery and power the electrical systems. By engaging the alternator only when necessary, the load on the engine is reduced during acceleration, improving overall engine performance and fuel efficiency. Drive pulleys contribute to load management and optimize the balance between power generation and engine output.
5. System Synchronization:
In some automotive engines, drive pulleys play a role in system synchronization. For instance, engines with variable valve timing mechanisms may utilize pulleys with adjustable timing marks or teeth. These pulleys help synchronize the movement of the camshafts with the crankshaft, ensuring precise valve timing and optimizing engine performance. Drive pulleys contribute to the synchronization of critical engine components, enhancing efficiency and power output.
6. Tensioning and Belt Alignment:
Drive pulleys assist in maintaining proper belt tension and alignment in automotive accessory drive systems. Tensioning pulleys, also known as idler pulleys, are used to apply tension to the belt, ensuring it remains properly engaged with the drive and driven pulleys. Belt alignment is essential for preventing slippage, reducing wear, and maximizing power transfer efficiency. Drive pulleys, along with tensioning pulleys, help maintain optimal belt tension and alignment, contributing to the overall reliability and performance of the accessory drive system.
7. System Reliability and Serviceability:
Drive pulleys play a role in ensuring the reliability and serviceability of automotive accessory drive systems. Well-designed pulleys with durable materials and proper groove profiles minimize wear and extend the life of the drive belt. Additionally, drive pulleys are often designed for easy installation, adjustment, and replacement, simplifying maintenance tasks. This contributes to efficient servicing and reduces downtime in automotive engines and accessory drive systems.
In summary, drive pulleys are integral components in automotive engines and accessory drive systems. They facilitate power distribution, belt routing, speed and torque conversion, load management, system synchronization, tensioning, and belt alignment. By performing these roles, drive pulleys contribute to the reliable and efficient operation of auxiliary components, enhancing the overall performance of automotive engines.
What are the advantages of using drive pulleys for power transmission?
Using drive pulleys for power transmission offers several advantages in mechanical systems. Drive pulleys play a critical role in efficient power transfer and contribute to the overall performance and reliability of the system. Here are some of the advantages of using drive pulleys for power transmission:
1. Efficient Power Transfer:
Drive pulleys provide an efficient means of transferring power from a driving source to driven components. They ensure a solid mechanical connection, allowing for smooth and reliable power transmission with minimal energy losses. By optimizing power transfer, drive pulleys help maximize the efficiency of the system, leading to improved performance and reduced energy consumption.
2. Speed and Torque Conversion:
Drive pulleys, when used in conjunction with belts or chains, enable speed and torque conversion between the driving source and the driven components. By varying the size ratio between the pulleys, different speed and torque relationships can be achieved. This flexibility allows for the adaptation of power output to meet the specific requirements of the driven components, optimizing efficiency and performance.
3. Mechanical Advantage:
Drive pulleys can provide mechanical advantage in power transmission systems. By utilizing different-sized pulleys or multiple pulley arrangements, the mechanical advantage can be increased. This allows the driving source to exert a greater force or torque on the driven components, enabling the system to handle higher loads or resistance. The mechanical advantage provided by drive pulleys enhances the efficiency and capability of the system.
4. Versatility and Adaptability:
Drive pulleys offer versatility and adaptability in power transmission applications. They can be used with various types of belts, cables, or chains, allowing for flexibility in system design. Drive pulleys can accommodate different power requirements, speeds, and load capacities. This versatility makes them suitable for a wide range of industries and applications, from automotive and manufacturing to mining and agriculture.
5. Precise Motion Control:
Drive pulleys, especially when combined with timing belts or chains, provide precise motion control in mechanical systems. The toothed design of timing belts and pulleys ensures accurate positioning and synchronization of components. This is crucial in applications that require precise movement, such as robotics, CNC machines, and conveyor systems. Drive pulleys contribute to the overall accuracy and repeatability of motion control systems.
6. Reduced Slippage and Vibration:
Drive pulleys, particularly those designed with V-grooves or toothed profiles, offer improved grip and reduced slippage between the pulley and the belt or chain. This minimizes energy losses due to slipping and enhances power transmission efficiency. Additionally, the stable engagement between the pulley and the belt or chain reduces vibration, ensuring smoother operation and reduced wear on system components.
7. Easy Maintenance and Serviceability:
Drive pulleys are typically designed for easy maintenance and serviceability. Belts or chains can be easily installed, adjusted, or replaced, allowing for efficient maintenance tasks. Drive pulleys often feature accessible mounting points and adjustment mechanisms, simplifying belt tensioning or alignment procedures. This ease of maintenance reduces downtime, enhances system reliability, and ensures optimal efficiency over the lifespan of the equipment.
In summary, using drive pulleys for power transmission offers advantages such as efficient power transfer, speed and torque conversion, mechanical advantage, versatility, precise motion control, reduced slippage and vibration, and easy maintenance and serviceability. These advantages contribute to the overall performance, reliability, and efficiency of mechanical systems.
editor by CX
2024-03-05